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Torus link homology and the nabla operator
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Abstract. In recent work, Elias and Hogancamp develop a recurrence for the Poincaré
series of the triply graded Hochschild homology of certain links, one of which is the
(n, n) torus link. In this case, Elias and Hogancamp give a combinatorial formula for
this homology that is reminiscent of the combinatorics of the modified Macdonald
polynomial eigenoperator ∇. We give a combinatorial formula for the homologies of
all links considered by Elias and Hogancamp. Our first formula is not easily com-
putable, so we show how to transform it into a computable version. Finally, we con-
jecture a direct relationship between the (n, n) torus link case of our formula and the
symmetric function ∇p1n .
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1 Introduction

We begin by establishing some notation from knot theory, following [6]. The remaining
sections of the paper will take a more combinatorial perspective.

The braid group on n strands, denoted Brn, can be defined by the presentation

Brn =
〈
σ1, σ2, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi

〉
(1.1)

for all 1 ≤ i ≤ n− 2 and |i− j| ≥ 2. This group can be pictured as all ways to “braid”
together n strands, where σi corresponds to crossing string i + 1 over string i and the
group operation is concatenation. One particularly notable braid is the full twist braid on
n strands, denoted FTn, which can be written

FTn = ((σ1)(σ2σ1) . . . (σn−1σn−2 . . . σ1))
2 . (1.2)

where multiplication is left to right. We will also need an operation ω on braids which
corresponds to rotation around the horizontal axis. We define ω on Brn by ω(σi) = σi
and ω(αβ) = ω(β)ω(α). Then ω is an anti-involution on Brn. All of our braids will have
the property that the string that begins in column i also ends in column i for all i; these
are sometimes called perfect braids.
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shift) in the expression of FT8.

D10101101 = FT3 K5

Inside v, the zeroes indicate which strands are connected to the full twist FTk, and the ones
indicate which are connected to K�, for k + � = n.

Then, of course, one wants to compute the Hochschild homology of the complexes Dv.
Let us be precise. Given a complex F of Soergel bimodules, let HHi(C) denote the complex
obtained by applying the functor HHi to each bimodule, and let HH(C) = �HHi(C). Let
HHH(C) denote the cohomology of the complex HH(C).

Because Hochschild cohomology of a complex C is unchanged by conjugation C �� FCF�1

for any invertible complex F , we can move part of Dv from the bottom to the top, yielding
the complex C �

v:

C �
10101101 =

FT4 K3

Note that FTn = C �
00···0.

For purely combinatorial reasons, we work instead with a similar complex Cv, which is de-
fined by the same expression as C �

v, but with K� replaced by its reduced version K̂�. Reduced
complexes are discussed in §4.3. The effect this has on Poincare polynomials is multiplication
by a factor of (1 � Q2).

Let v · w denote the concatenation of two shuffles (sequences of zeroes and ones). For any
shuffle v, we can use our distinguished triangle for Kn to prove the following:

Proposition 1.3. We have HH(Cv·0) �
⇣

HH(C1·v) � Q2 HH(C0·v)
⌘

.

Next, we can use some relatively easy arguments involving the complex Kn to prove that
HH(Cv·1) is just a direct sum of shifted copies of HH(Cv). For readers familiar with knot
theory, this last statement should be thought of as analogous to the Markov move; it allows
us to reduce the number of strands by 1. Finally, a simple observation (pertaining to reduced
complexes) allows one to replace the computation of HH(C000···0) with HH(C100···0). Com-
bining these three operations, we obtain a recursive convolution description of any HH(Cv).
This is the main result of §4.5.

Let us return to the computation of the Hochschild cohomology of the Rouquier complex
for the full twist FTn on n strands.

We are interested in the cohomology HHH(Cv) of the complexes HH(Cv). However, in
general, the cohomology of a convolution of complexes is not the direct sum of the cohomol-
ogy of the individual complexes; instead, there is a spectral sequence relating the two. Our
final argument comes from observing a parity miracle! We prove inductively that HHH(Cv)
is concentrated in even homological degrees. This forces every spectral sequence in sight to
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Fig. 1: We have drawn the complex C10101101, where FT3 is the full twist braid and K5 is a certain complex defined
recursively in [EH16]. This figure is used courtesy of [EH16].

1  i  n. The result is called a closed braid. Alexander proved that every link can be represented by a
closed braid (although this representation is not unique) [Ale23]. The closure of a perfect braid is a link
that consists of n separate unknots linked together.

In [EH16], Elias and Hogancamp assign a complex Cv to every binary word v. We describe this
assignment here – see Figure 1 for an example. Say v 2 {0, 1}n with |v| = m. We begin with two braids,
the full twist braid FTn�m and a certain recursively defined complex Km [EH16], which sits to the right
of FTn�m. For i = 1 to n, we feed string i into the leftmost available position in Km if vi = 1; otherwise,
we feed string i into the leftmost available position in FTn�m. All crossings that occur are forced to be
“positive,” i.e. the right strand crosses over the left strand. This induces a braid �v 2 Brn that occurs
before the adjacent FTn�m and Km. The final complex Cv is obtained by performing !(�v), followed
by �v , followed by the adjacent FTn�m and Km. We note that C0n is the full twist braid FTn and that
the closure of this braid is the (n, n) torus link. The combinatorics of other links, in particular the (m, n)
torus link for m and n coprime, has been studied by a variety of authors in recent years [GORS14, GN15].
Haglund gives an overview of this work from a combinatorial perspective in [Hag16].

Elias and Hogancamp map each complex Cv to a graded Soergel bimodule and then consider the
Hochschild homology of this bimodule; this is sometimes called Khovanov-Rozansky homology [Kho07,
KR08]. This homology has three gradings: the bimodule degree (using the variable Q), the homological
degree (T ), and the Hochschild degree (A). After the grading shifts q = Q2, t = T 2Q�2, and a = AQ�2,
Elias and Hogancamp give a recurrence for the Poincaré series of this triply graded homology, which they
denote fv(q, a, t). They also give a combinatorial formula for the special case f0n(q, a, t). We will give
two combinatorial formulas for fv(q, a, t) for every v 2 {0, 1}n.

In Section 2, we define a symmetric function Lv(x; q, t) which we call the link symmetric func-
tion. Its definition is reminiscent of the combinatorics of the Macdonald eigenoperator r, introduced
in [BGHT99]. We prove that fv(q, a, t) is equal to a certain inner product with Lv(x; q, t).

The main weakness of our first formula is that it is a sum over infinitely many objects, so it is not clear
how to compute using this formula. We address this issue in Section 3, obtaining a finite formula for
Lv(x; q, t) using a collection of combinatorial objects we call barred Fubini words.

We close by presenting some conjectures in Section 4. In particular, we conjecture that

L0n(x; q, t) = (1 � q)�nrp1n . (3)

where the terminology is defined in Section 4. A proof of this conjecture would provide the first combina-

Figure 1: We have drawn the complex C10101101, where FT3 is the full twist braid and
K5 is a certain complex defined recursively in [6]. This figure is used courtesy of [6].

Given a braid with n strands, one can form a link (i.e. nonintersecting collection of
knots) by identifying the top of the strand that begins in position i with the bottom
of the strand that ends in position i for 1 ≤ i ≤ n. The result is called a closed braid.
Alexander proved that every link can be represented by a closed braid (although this
representation is not unique) [1]. The closure of a perfect braid is a link that consists of
n separate unknots linked together.

In [6], Elias and Hogancamp assign a complex Cv to every binary word v. We describe
this assignment here – see Figure 1 for an example. Say v ∈ {0, 1}n with |v| = m.
We begin with two braids, the full twist braid FTn−m and a certain recursively defined
complex Km [6], which sits to the right of FTn−m. For i = 1 to n, we feed string i into the
leftmost available position in Km if vi = 1; otherwise, we feed string i into the leftmost
available position in FTn−m. All crossings that occur are forced to be “positive,” i.e.
the right strand crosses over the left strand. This induces a braid βv ∈ Brn that occurs
before the adjacent FTn−m and Km. The final complex Cv is obtained by performing
ω(βv), followed by βv, followed by the adjacent FTn−m and Km. We note that C0n is
the full twist braid FTn and that the closure of this braid is the (n, n) torus link. The
combinatorics of other links, in particular the (m, n) torus link for m and n coprime, has
been studied by a variety of authors in recent years [8, 7]. Haglund gives an overview of
this work from a combinatorial perspective in [10].

Elias and Hogancamp map each complex Cv to a graded Soergel bimodule and then
consider the Hochschild homology of this bimodule; this is sometimes called Khovanov-
Rozansky homology [12, 13]. This homology has three gradings: the bimodule degree
(using the variable Q), the homological degree (T), and the Hochschild degree (A). After
the grading shifts q = Q2, t = T2Q−2, and a = AQ−2, Elias and Hogancamp give a
recurrence for the Poincaré series of this triply graded homology, which they denote
fv(q, a, t). They also give a combinatorial formula for the special case f0n(q, a, t). We will
give two combinatorial formulas for fv(q, a, t) for every v ∈ {0, 1}n.

In Section 2, we define a symmetric function Lv(x; q, t) which we call the link symmet-
ric function. Its definition is reminiscent of the combinatorics of the Macdonald eigenop-
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erator ∇, introduced in [3]. We prove that fv(q, a, t) is equal to a certain inner product
with Lv(x; q, t).

The main weakness of our first formula is that it is a sum over infinitely many objects,
so it is not clear how to compute using this formula. We address this issue in Section 3,
obtaining a finite formula for Lv(x; q, t) using a collection of combinatorial objects we
call barred Fubini words.

We close by presenting some conjectures in Section 4. In particular, we conjecture
that

L0n(x; q, t) = (1− q)−n∇p1n . (1.3)

where the terminology is defined in Section 4. A proof of this conjecture would provide
the first combinatorial interpretation for ∇p1n . There has been much recent work estab-
lishing combinatorial interpretations for ∇en [5] and ∇pn [15]. We believe that Lv(x; q, t)
is also related to Macdonald polynomials for general v, although we do not have an
explicit conjecture in this direction.

2 An infinite formula

Let N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}. We begin by defining two statistics.

Definition 2.1. Given words γ ∈Nn and π ∈ Zn
+, we define

area(γ) = |γ| − #{1 ≤ i ≤ n : γi > 0} (2.1)
dinv(γ, π) = #{1 ≤ i < j ≤ n : γi = γj, πi > πj} (2.2)

+ #{1 ≤ i < j ≤ n : γi + 1 = γj, πi < πj}

xπ =
n

∏
i=1

xπi . (2.3)

In Figure 2, we draw a diagram for γ = 20141022 and π = 41322231. Area counts
the empty boxes in such a diagram, dinv counts certain pairs of labels, and xπ records
all labels that appear in the diagram.

Definition 2.2. Given n ∈ Z+ and v ∈ {0, 1}n, define

Lv = Lv(x; q, t) = ∑
γ∈Nn, π∈Zn

+
γi=0⇔vi=1

qarea(γ)tdinv(γ,π)xπ. (2.4)

Perhaps the first thing to note about Lv is that it is symmetric in the x variables; one
way to see this is to express Lv as a sum of LLT polynomials [14]. More precisely, each
γ ∈ Nn can be associated with an n-tuple λ(γ) of single cell partitions in the plane,
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Figure 2: We have depicted the example γ = 20141022 and π = 41322231 by draw-
ing bottom-justified columns with heights γ1, γ2, . . . , γ8 and the labels πi are placed
as high as possible in each column. In this example, we compute area(γ) = 6,
dinv(γ, π) = 7, where the contributing pairs are in columns (1, 7), (1, 8), (2, 3), (2, 5),
(3, 5), (5, 7), (7, 8), and xπ = x2

1x3
2x2

3x4.

where the ith cell is placed on diagonal γi and the order is not changed. Using the
notation of [11], the unicellular LLT polynomial Gλ(γ)(x; t) can be used to write

Lv = ∑
γ∈Nn

γi=0⇔vi=1

qarea(γ)Gλ(γ)(x; t). (2.5)

Since LLT polynomials are symmetric, every Lv is also symmetric.
We also remark that L1n is equal to the modified Macdonald polynomial H̃1n(x; q, t),

which is also equal to the graded Frobenius series of the coinvariants of Sn with grading
in t.

Next, we note that the Poincaré series fv(q, a, t) can be recovered as a certain in-
ner product of Lv. We follow the standard notation for symmetric functions and their
usual inner product, as described in Chapter 7 of [19]. The following lemma leads to
Theorem 2.1. We omit the proofs from this extended abstract.

Lemma 2.1.

L0n =
1

1− q
L10n−1 . (2.6)

Theorem 2.1. For any v ∈ {0, 1}n,

fv(q, a, t) =
n

∑
d=0
〈Lv, en−dhd〉 ad. (2.7)

For the sake of comparison with [6], we give a simplified formula that directly com-
putes fv(q, a, t) from Theorem 2.1. Given γ ∈Nn and 1 ≤ i ≤ n, let

dinvi(γ) = #{j < i : γj = γi}+ #{j > i : γj = γi + 1}. (2.8)
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Corollary 2.1.

fv(q, a, t) = ∑
γ∈Nn

γi=0⇔vi=1

qarea(γ)
n

∏
i=1

(
a + tdinvi(γ)

)
(2.9)

where, as before, area(γ) = |γ| − #{1 ≤ i ≤ n : γi > 0}.

If v = 0n and a = 0, this is exactly Theorem 1.9 in [6].
Let us use Corollary 2.1 to compute f00(q, a, t). We consider three cases: either γ2 ∈

{γ1, γ1 + 1}, γ2 > γ1 + 1, or γ2 < γ1. In the first case, we get a contribution of (1 +
a)(a + t) from the dinv product in Corollary 3.1; in the other cases, we get (1 + a)2.

In the first case, our minimum area is either 0 or 1, depending on if γ2 = γ1 or γ1 + 1.
Either way, we can choose any nonnegative integer k and add k to both γ1 and γ2. This
yields an area contribution of (1 + q)(1− q2). In the second case, the minimum area is
2 and not only can we add area to both γ1 and γ2 equally but we can add area to γ2 by
itself. The resulting contribution is q2/((1− q2)(1− q)). Similarly, in the third case we
get a contribution of q/((1− q2)(1− q)).

Summing up all these weights, we get

f00(q, a, t) =
(1 + q)(1 + a)(a + t)

1− q2 +
q2(1 + a)2

(1− q2)(1− q)
+

q(1 + a)2

(1− q2)(1− q)
(2.10)

=
q + t− qt + a(1 + q + t− qt) + a2

(1− q)2 . (2.11)

This process can become difficult for v with length as short as 3. The difficulty comes
mostly from considering how to add (possibly infinite amounts of) area without affecting
the dinv vectors. We address this issue in the next section by deriving a formula that
allows us to restrict to a finite set of γ vectors.

3 A finite formula

Although the combinatorial definition of Lv is straightforward, it is not computationally
effective2 since it is a sum over infinitely many words γ ∈ Nn. We rectify this issue in
Theorem 3.1 below. The idea is to compress the vectors γ while altering the statistics so
that the link polynomial Lv is not changed.

Definition 3.1. A word γ ∈Nn is a Fubini word if every integer 0 ≤ k ≤ max(γ) appears in
γ.

2There are also infinitely many π ∈ Zn
+, but this problem can be addressed with standardization [9].
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For example, 41255103 is a Fubini word but 20141022 is not a Fubini word, since it
contains a 4 but not a 3. We call these Fubini words because they are counted by the Fu-
bini numbers ([18], A000670), which also count ordered partitions of the set {1, 2, . . . , n}.
We will actually be interested in certain decorated Fubini words.

Definition 3.2. Given v ∈ {0, 1}n, we say that a Fubini word γ is associated with v if either

• v = 0n and the only zero in γ occurs at γ1, or

• v 6= 0n and γi = 0 if and only if vi = 1.

Definition 3.3. A barred Fubini word associated with v is a Fubini word γ associated with v
where we may place bars over certain entries. Specifically, the entry γj may be barred if

1. γj > 0,

2. γj is unique in γ, and

3. for each i < j we have γi < γj, i.e. γj is a left-to-right maximum in γ.

We denote the collection of barred Fubini words associated with v by F v.

For example,

F 0 = {0} (3.1)

F 00 = {01, 01} (3.2)

F 000 = {011, 012, 012, 012, 012, 021, 021}. (3.3)

The sequence |F 0n | for n ∈ N begins 1, 1, 2, 7, 35, 226, . . . and seems to appear in the
OEIS as A014307 [18]. One way to define sequence A014307 is that it has exponential
generating function

√
ez

2− ez . (3.4)

This sequence is given several combinatorial interpretations in [17]. It would be inter-
esting to obtain a bijection between F 0n and one of the collections of objects in [17]. See
Figure 3 for more examples of barred Fubini words.

Given a barred Fubini word γ and a word π ∈ Zn
+, we use the same area statistic

and modify the dinv statistic slightly:

area(γ) = |γ| − #{1 ≤ i ≤ n : γi > 0} (3.5)
dinv(γ, π) = #{1 ≤ i < j ≤ n : γi = γj, πi > πj} (3.6)

+ #{1 ≤ i < j ≤ n : γi + 1 = γj, πi < πj, γj is not barred}.

We also let bar(γ) be the number of barred entries in γ. We have the following result.
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v F v
111 000
011 100, 100
101 010, 010
110 001, 001
001 110, 120, 120, 120, 120, 210, 210
010 101, 102, 102, 102, 102, 201, 201
100 011, 012, 012, 012, 012, 021, 021
000 011, 012, 012, 012, 012, 021, 021

Figure 3: We have listed the barred Fubini words F v for each v ∈ {0, 1}3.

Theorem 3.1. For v ∈ {0, 1}n,

Lv = ∑
γ∈F v
π∈Zn

+

qarea(γ)+bar(γ)tdinv(γ,π)(1− q)− bar(γ)−χ(v=0n)xπ (3.7)

where χ of a statement is 1 if the statement is true and 0 if it is false.

As in Section 2, we give a formula for computing fv(q, a, t) directly. Given a barred
Fubini word γ, we define

dinvi(γ) = #{j < i : γj = γi}+ #{j > i : γj = γi + 1, γj is not barred}. (3.8)

Corollary 3.1.

fv(q, a, t) = ∑
γ∈F v

qarea(γ)+bar(γ)(1− q)− bar(γ)−χ(v=0n)
n

∏
i=1

(
a + tdinvi(γ)

)
(3.9)

Let us use Corollary 3.1 to compute f00(q, a, t) again. We note that F 00 = {01, 01}.
Computing the weights for these vectors and then adding, we get

f00(q, a, t) =
(1 + a)(a + t)

1− q
+

q(1 + a)2

(1− q)2 (3.10)

=
q + t− qt + a(1 + q + t− qt) + a2

(1− q)2 (3.11)

which is the same answer we computed at the end of Section 2.



8 Andrew Timothy Wilson

t2

t qt q2t
1 q q2 q3

Figure 4: This is the Ferrers diagram of the partition µ = (4, 3, 1). In each cell
we have written the monomial qitj that corresponds to the cell, yielding Bµ =

{1, q, q2, q3, t, qt, q2t, t2}.

4 Conjectures

So far, we have used the inner product 〈Lv, en−dhd〉 to compute fv(q, a, t); one might
wonder if there is any value in studying the full symmetric function Lv. In this section,
we conjecture that the link symmetric function Lv is closely related to the combinatorics
of Macdonald polynomials, hinting at a stronger connection between Macdonald poly-
nomials and link homology. Following [6], we must first define a “normalized” version
of the link symmetric function Lv.

Definition 4.1.

L̃v = L̃v(x; q, t) = (1− q)n−|v|Lv(x; q, t). (4.1)

We could also define L̃v in terms of diagrams; each box that contains a label from
π contributes an additional factor of 1− q. Theorem 3.1 implies that L̃v has coefficients
in Z[q, t], whereas the coefficients of Lv are elements of Z[[q, t]]. We conjecture that the
normalized link symmetric function L̃v is closely connected to the Macdonald eigenop-
erators ∇ and ∆.

The modified Macdonald polynomials H̃µ form a basis for the ring of symmetric
functions with coefficients in Q(q, t). They can be defined via triangularity relations or
combinatorially [11, 9]. Given a partition µ, let Bµ be the alphabet of monomials qitj

where (i, j) ranges over the coordinates of the cells in the Ferrers diagram of µ. We
compute an example in Figure 4.

Given a symmetric function F and a set of monomials A = {a1, a2, . . . , an}, we let
F[A] be the result of setting xi = ai for 1 ≤ i ≤ n and xi = 0 for i > n. Then we define
two operators on symmetric functions by setting, for µ ` n,

∆FH̃µ = F
[
Bµ

]
H̃µ (4.2)

∇H̃µ = ∆en H̃µ (4.3)
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and expanding linearly. Note that, for µ ` n, en[Bµ] is simply the product of the n
monomials in Bµ, which is sometime written Tµ in the literature.

Conjecture 4.1.

∇p1n = L̃0n (4.4)

∆en−1 p1n = ∑
v∈{0,1}n

|v|=1

L̃v (4.5)

In fact, both conjectures follow from the conjecture that

L̃v0 = ∇p1∇−1 L̃v. (4.6)

We should mention that Eugene Gorsky first noticed that the identity

d

∑
a=0
〈∇p1n , en−dhd〉 ad = (1− q)n f0n(q, a, t) (4.7)

seemed to hold and communicated this observation to the author via Jim Haglund.
Gorsky’s conjectured identity is a special case of Conjecture 4.1. It is also interesting to
note that the operator in (4.6) appears in the setting of the Rational Shuffle Conjecture
as −Q1,1 [4].

As an example of our conjecture, we can use Sage to compute

〈∇p1,1, p1,1〉 = 1 + q + t− qt. (4.8)

This expression should equal
〈

L̃00, p1,1

〉
by Conjecture 4.1. To compute this inner prod-

uct using Theorem 3.1, we consider the barred Fubini words 01 and 01, each of which
can receive labels π = 12 or 21. The corresponding diagrams are

1
2

2
1

1
2

2
1

where we have moved the bars from γi to the corresponding πi. The weights of these
diagrams coming from Theorem 3.1 are

t
1− q

1
1− q

q
(1− q)2

q
(1− q)2 (4.9)

respectively. After multiplying by the normalizing factor (1− q)2 to go from L00 to L̃00,
we sum the resulting weights to get

(1− q)t + 1− q + q + q = 1 + q + t− qt (4.10)
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as desired.
After reading an earlier version of this paper, François Bergeron contacted the author

with the following additional conjectures.

Conjecture 4.2 (Bergeron, 2016).

Lv0 = L1v + qL0v (4.11)

L0n = ∑
v∈{0,1}k

qn−|v|Lv0n−k (4.12)

t (Lu011v − Lu101v) = Lu101v − Lu110v (4.13)

L̃0a1b0c = ∇p1c∇−1H̃1b∇p1a (4.14)

L1a01b =
ta − 1

ta+b − 1

[
∇p1∇−1, H̃1a+b

]
+ H̃1a+b p1 (4.15)

where the bracket represents the Lie bracket and operators are applied to 1 if nothing is explicitly
specified. Bergeron also observed that Lv(x; q, 1 + t) is e-positive. (For more context on this last
statement, see Section 4 of [2].)

It is clear that (4.11) implies (4.12). We do not know of any other relations between
these conjectures. We close with more open questions.

1. Is there a Macdonald eigenoperator expression for L̃v for other v? Perhaps we can
use ideas from the Rational Shuffle Conjecture [4], recently proved by Mellit [16].
In particular, Mellit’s proof relies heavily on facts about toric braids, which seems
relevant to the appearance of torus links in our setting.

2. Can we generalize our conjecture for ∇p1n to “interpolate” between our conjecture
and the Shuffle Theorem [5], or maybe the Square Paths Theorem [15]?
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